
On-Board Development Tutorial

Developing Palm Pilot Applications On-Board
Using Quartus Forth and RsrcEdit

Version 1.02

Steven Donahue

Quartus Forth Tutorial
Developing Palm Pilot Applications On-Board Using Quartus Forth
and RsrcEdit

Introduction

Goals of this Tutorial

Welcome to my tutorial covering on-board application development using Quartus Forth
and OnBoard RsrcEdit. I am developing this tutorial as a learning process for myself, but
I hope that it will be useful to others like me who are just starting out.

Through the course of this tutorial, I will implement some basic applications to illustrate
how to use the Quartus Forth development environment in conjunction with the
OnBoard RsrcEdit resource editor to do on-board application development. In an effort
to cover the use of several different types of resources, I will use subsequent examples to
extend the functionality of these applications.

This tutorial is not really intended to be a Forth tutorial. However, the later examples cover
several common areas of problems (strings, floats, etc) often discussed on Neal's Quartus
Forth discussion forum (http://www.interlog.com/~nbridges/wwwboard/wwwboard.html).

The first two exercises focus primarily on the creation of the resources used for
applications. The Forth code that drives this application is very trivial. The rest of the
exercises will focus less on the resource creation and more on the Forth code required to
drive an application that uses several different types of resources.

Finally, I make no claims to be a Forth expert. I have dabbled in Forth on and off since the
mid-80's, but it has always been just for fun. I have never used Forth in any of my
professional development efforts, primarily because I work for a company that uses a
proprietary language for their telecommunications software development. I welcome
constructive comments on any violations of Forth conventions or coding style in the
examples used in this tutorial.

2

Credits

I am using two programs for this tutorial - Quartus Forth and OnBoard RsrcEdit. I have
chosen these two programs as my development platform because they allow me to do all
of my application development on-board. There are alternative resource editors/compilers
available, but to the best of my knowledge, they do not allow on-board development. All
examples and screen captures used in this tutorial are from one of these two programs.

Quartus Forth

At the time of development of this tutorial, I am using Quartus Forth v1.1.0R.

From Neal Bridges' Quartus Forth web page:

Quartus Forth is an on-board ISO/ANSI Standard Forth optimizing native-code compiler for the Pilot™ ,
PalmPilot™ , Palm III™ , and IBM WorkPad™ connected organizers.

For more information about Quartus Forth, please visit:

http://www.interlog.com/%7Enbridges/quartus.html

OnBoard RsrcEdit

At the time of development of this tutorial, I am using OnBoard RsrcEdit v0.997.

From the Roger Lawrence's IndiVideo web page:

OnBoard RsrcEdit is a Palm Pilot resource editor that runs on the Pilot and allows users to view and
change application resources using a forms-based editing environment tailored for specific resource
types.

For more information about OnBoard RsrcEdit, please visit:

http://www.individeo.net/

3

A Note About Creator IDs

Every Palm OS application, shared library, and feature has a four character Creator ID.
This creator ID uniquely identifies the application, shared library, or feature to the Palm
Operating System.

The examples in this tutorial use arbitrary and unofficial creator ID values. That is perfectly
acceptable for testing or private development, as long as this creator ID value does not
conflict with another application or shared library that is currently installed on your Palm
Pilot.

However, if these applications were ever going to be released to the public, we would
need to get an official creator ID. Palm Computing maintains the official list of Creator IDs.
An official creator ID can be obtained at: http://palm.3com.com/devzone/crid/cridsub.html

4

The Basics

Where do all programmers start when exploring a new development environment? "Hello,
World!" of course. This exercise will allow us to start with the most basic application
possible - one that simply displays a message and allows no interaction. Some very basic
interaction is added in the follow-up exercise.

HelloWorld - Exercise A

Exercise Goals for HelloWorld - Exercise A

n Develop a single form application that simply displays the "Hello, World!"
message

Development Steps for HelloWorld - Exercise A

The following approach will be used to design and develop this application.

n Design and develop the resources to be used for this application

n Design and develop the Forth code to drive this application

5

Resources for HelloWorld - Exercise A

Create the Resource Database

The first thing we need to do is create a resource database to be used for our application.
The following steps outline how to create a new resource database.

n Step 1 - Start RsrcEdit: From your applications launcher, start the RsrcEdit
application.

n Step 2 - Create a New Resource Database: From within the main RsrcEdit screen,
tap the MENU silk screen button. Select New Database from the Options menu as
seen below.

n Step 3 - Supply Resource Database Information: Fill in the critical information for
the new resource database. Note: I am appending a letter ("A" in this exercise) to all
resource database names, creator IDs, and Forth source files to help distinguish
between tutorial exercises. Subsequent exercises will use these files as a starting
point, and build on them.

n fill in the Name field as "HWRsrcA"

n fill in the Creator field as "hiwa"

n fill in the Type field as "rsrc"

n check the Resource DB box

6

n Step 4 - Finish Resource Database Creation: Tap the OK button to create the
empty resource database. You should now see a similar screen display to the one
shown below.

n Step 5 - Set the Backup Bit: In order for this resource to be backed up during a
HotSync, the backup bit needs to be set. It is a good idea to backup the resource
databases, in case of a hard reset. If the resource database was backed up, it can be
re-installed from the backup directory.

n Step 6 - Open the Empty Resource Database: With the "HWRsrcA" database
selected, tap the Open button to open the resource list. The box showing the list of
resources will be empty for this new database, as illustrated below.

7

Add the Form Resource

Now, we want to create the main screen (or "form") where we will display the "Hello,
World!" message. The following steps outline how to add a form.

n Step 1 - Add a Form to the Resource Database: To do this, tap the MENU silk
screen button. Select Form from the New menu as seen below.

n Step 2 - Format the Form: The main screen of our application must be formatted to
look like we want it to. We are currently in the form properties screen. This screen
allows us to change the look of the selected form. We want our form to take up the
entire screen, so set the properties as follows.

n set both the width and height fields to 160

n set this form to useable by checking the Useable box

n check the Save Behind box

n Step 3 - Preview the Form: Now that our main form has been created, test it out
with the Preview button. To return to RsrcEdit from the preview, tap the
APPLICATIONS silk screen button.

 Hey! What's going on here? That was just a blank screen! The answer is, we need
to define some more resources for our main form to give it some character.

8

Add Resources to the Form

In order to add some character to our form, we need to create some additional resources
associated with the form.

n Step 1 - Add a Title to the Form: Our form needs a title. To add a title, tap the
MENU silk screen button from the form properties screen, and select Title from the
New menu as seen below.

n Step 2 - Fill in the Title: Just fill in the string that we are going to use as our title,
"Hello, World!", and tap the OK button.

n Step 3 - Add a Label to the Form: Let's also add a text label in the middle of the
screen telling the world hello. Do this just like we did above for the title, except select
Label from the New menu of the form properties screen.

9

n Step 4 - Fill in the Label Properties: Once inside the label properties screen shown
below, fill in the fields as follows. The top and left fields specify the positioning on the
screen where our label will be placed. The ID field is just a resource identifier that
needs to be unique.

n fill in the top field as 75

n fill in the left field as 45

n change the label ID to 1200

n check the Useable box

n select Large in the Font popup trigger

n type the "Hello, World!" string in the text field

 Tap the OK button to return to the form details screen when all of the fields are filled
in.

n Step 5 - Preview the Form Again: Now that we have given our form some character,
let's test it out with the Preview button again. Remember, to return to RsrcEdit from
the preview, tap the APPLICATIONS silk screen button.

10

Save the Resources

Now that our screen looks like we want it to, we need to save all of these resources in the
database.

n Step 1 – Return to the Resource List Screen: Tap the OK button on the form
details screen to return to the resource list screen.

n Step 2 – Update the Form Resource ID: Change the ID field from "1000", to "1001"
because we will be using "1000" for our icon bitmap resource ID later

n Step 3 – Save and Exit: Tap the Apply button, and then tap the Done button to save
everything and return to the main RsrcEdit screen

We now have a resource database that is ready to be used by some Forth code.

11

Forth Code for HelloWorld - Exercise A

The Forth code for this program is very simple. We basically want to display our form, and
ignore any subsequent input events. All exercises in this tutorial assume that you have
imported the library.mpa file into your Memo Pad. If you have not already done this as
part of the installation of Quartus Forth, you need to do so now. See the Quartus Forth
documentation for more details on this.

The following source should be entered as a new entry in the Memo Pad application. I will
attempt to explain what each line of Forth code is doing as I go.

n Step 1 - Name the File: The first part of the first line is important, as it distinguishes
the name of the Forth "file". The date and initial time stamp can be modified or
deleted, but the back-slash and the word following it designate the memo as a Forth
file.

\ hello-a 1/20/99 10:20 pm - SCD

n Step 2 - Include Necessary Files: The following lines specify other library or source
code files that are needed for this application.

needs ids
needs resources

n Step 3 - Identify and Open Resource Database: The following line identifies our
resource database (remember naming it "hiwa"?) and opens it for use.

(ID) hiwa (ID) rsrc use-resources

n Step 4 - Constant Definitions: The next line identifies our main form id. If you used
a number besides 1001 in the resource specification above, make sure to make the
appropriate modifications here as well.

1001 constant HelloForm

n Step 5 - Define Some Forth Words: There are two new word definitions - show-
panel and go.

n show-panel simply puts the constant associated with our main form on the
stack and invokes ShowForm. ShowForm displays the form identified on the
stack, and establishes a default handler for it.

: show-panel (--)
 HelloForm ShowForm ;

12

n go is the main entry point. It executes the show-panel word and then goes
into a loop that accepts event input via ekey, and immediately discards it.

: go show-panel
 begin ekey drop again ;

Full Source Listing

The entire source listing is shown below.

\ hello-a 1/20/99 10:20 pm - SCD

needs ids
needs resources

(ID) hiwa (ID) rsrc use-resources

1001 constant HelloForm

: show-panel (--)
 HelloForm ShowForm ;

\ Main entry point:
: go show-panel
 begin ekey drop again ;

13

Test – Exercise A

We are finally ready to try out our first application! Enter Quartus Forth and type the
following:

include hello-a
go

Voila! The first application works as we expected. Tap the APPLICATIONS silk button to
exit the program.

14

HelloWorld - Exercise B

Exercise Goals for HelloWorld - Exercise B

n Extend the original HelloWorld program with a menu

n Link the new menu selection, "About HelloWorld", to a informational Alert window
that tells about our program

n Associate a help string with the "i" icon in the top right corner of the "About
HelloWorld" box

n Create a standalone executable

15

Development Steps for HelloWorld - Exercise B

The following approach will be used to design and develop this extension of our existing
HelloWorld application.

n Design and develop the screen resources to be used for this extension

n Change the Forth source code to handle the new menu event

n Create a standalone executable

Resources for HelloWorld - Exercise B

For this exercise, we will build on our existing resource file. Remember, because I wish to
package these resource databases along with this tutorial, we will be making a copy of our
original resources and using a different name. In a real-world scenario, we could just build
on our original resource database instead of copying them.

Copy the Existing Resource Database

n Step 1 – Start RsrcEdit: Launch RsrcEdit from the application launcher.

n Step 2 - Copy the Resource Database: From within the main RsrcEdit screen,
select the original "HWRsrcA" that we created in Exercise A. Now, tap the MENU silk
screen button. Select Duplicate Database from the Options menu as seen below.
This will create a resource database named "Copy of HWRsrcA".

16

n Step 3 – Rename the New Resource Database: We now need to rename this new
copy of the resource database. To rename the database, do the following sub-steps.

n change the name of the new resource database from “Copy of HWRsrcA” to
"HWRsrcB"

n change the creator id from “hiwa” to "hiwb"

n tap the Apply button to accept these changes

Add the Menu Resource

We now need to add some new menu resources to the new resource database.

n Step 1 – Open the Resource Database: Make sure that “HWRsrcB” is selected,
and tap the Open button to begin editing the resources for this exercise. We are now
back in the resource list screen of RsrcEdit, and we should see the existing form
created in Exercise A. We will now begin the process of creating the other resources
described above in the goals for this exercise.

n Step 2 – Add a Menu Bar Resource: We need to create the menu bar for our main
form. To do this, tap the MENU silk screen button. Select Menu bar from the New
menu, just like we did with the main form in Exercise A. You will now be in the menu
bar properties screen.

n Step 3 – Add a Menu Category: Now, create a menu category by tapping the
MENU silk screen button. Select New from the Edit menu.

17

n Step 4 – Update Menu Category Properties: We want the menu category to be
called “Options”, so we need to change the menu category properties. Update the
properties as follows.

n change the name from "New Menu" to "Options"

n dhange the left field to 4

n tap the Calc Width button.

n tap the Apply button to accept these changes.

 The screen should now look something like the following.

n Step 5 – Open the “Options” Menu Category: In order to add menu items to the
menu category, we must go to the menu category details screen. To do this, select
the "Options" menu category that we just created, and tap the Open button.

n Step 6 – Add a New Menu Item Resource: Now, let's add the "About… " menu item
to the "Options" menu category. Tap the MENU silk screen button, and select New
from the Edit menu.

n Step 7 – Update the Menu Item Properties: Update the menu item properties as
follows.

n change the name from "New Menu" to "About… "

n change the top field to 14

n change the left field to 6

n tap the Calc Size button

n give the selection a unique identifier by changing the ID field to 2001

n let's make this menu option available with a command-A keystroke by filling
in the Key field with an "A"

n tap the Apply button to accept these changes

18

 The screen should now look something like the following.

n Step 8 – Save and Exit: Tap the OK button to accept these changes and return to
the menu bar properties screen. From there, tap the OK button to return to the
familiar resource list screen.

n Step 9 – Update the Menu Bar Resource ID: On the resource list screen, select the
"MBAR 1000" entry, and change the resource ID associated with it to "2000" so it is
unique, and then tap apply.

Add the Menu Bar ID to the Main Form

We now need to tell the main from about it's new menu. The following steps outline this
process.

n Step 1 - Open the Main Form: Tap the main form resource, "tFRM1001", and then
tap the Open button.

n Step 2 - Update the Menu Bar ID Field: Change the MBar ID field to "2000" to
associate the new menu bar with this form.

n Step 3 - Save and Exit: Tap the OK button to save and exit back to the resource list.

Add the Alert Box Resource

Now, we will create the "About HelloWorld" pop-up window.

n Step 1 – Create the Alert Box Resource: Tap the MENU silk screen button. Select
Alert from the New menu, just like we did for the menu bar earlier. You will now be in
the alert box properties screen.

19

n Step 2 – Update the Alert Box Properties: Update the alert box properties as
follows.

n fill in the Title field with "About HelloWorld"

n type in the message we wish to display in the Message field (see screen
capture below, or create your own display string)

n change the Help ID field to a unique identifier, "3001"

n Step 3 – Add an OK Button to the Alert Box: Now, we need to add an OK button
that will allow us to dismiss this alert box. Tap the MENU silk screen button and
select New from the Edit menu.

n Step 4 – Update the OK Button Properties: Change the name from "Button" to
"OK", and tap the Apply button to accept these changes. The screen should now look
something like the following.

n Step 5 – Save and Exit: Tap the OK button to accept these changes and return to
the resource list screen.

n Step 6 – Update the Alert Box Resource ID: Change the ID of our alert box to
"3000", just like we did for the menu bar.

Add the Help String Resource

Now, we want to add an information string that is displayed when the "i" icon is tapped in
top right-hand corner of the alert box. The following steps outline this process.

n Step 1 – Create a String Resource: Tap the MENU silk screen button. Select String
from the New menu.

n Step 2 – Fill in the Help Screen String: Fill in the help screen string (see the screen
capture below, or create your own string)

20

n Step 3 – Update the String Resource ID: Change the ID to "3001". The screen
should now look like the following.

n Step 4 – Save and Exit: Tap the OK button to save the string resource and return to
the resource list screen.

Create the Icon Bitmap

We now need to create an icon bitmap that will be associated with our standalone
application. This step is optional. If no bitmap is created, the default icon will be used for
our application.

n Step 1 - Create the Icon Bitmap Resource: To do this, select Icon from the New
menu of the resource list screen of RsrcEdit.

n Step 2 - Draw the Bitmap: This is a 32X32 drawing area. The bottom 10 pixels are
used by the program name, so anything drawn in these rows will not be displayed in
the icon. A sample bitmap is shown below.

n Step 3 – Save the Bitmap Resource: Tap the OK button to return to the resource
list screen.

n Step 4 – Save All New Resources: From the resource list screen, tap the Done
button to save all of our changes to the database.

Now, let’s check out the source code changes required to drive these new resources.

21

Forth Code for HelloWorld - Exercise B

The Forth code changes for this application are almost as simple as the original program.

n Step 1 – Copy the Source File: Copy the original source in “hello-a” to a new memo
and change “hello-a” to “hello-b”. While we are at it, change the creator id from “hiwa”
to “hiwb”.

n Step 2 – Include Necessary Files: Now that we will be dealing with events, we need
to include the "Events" library file. In the section where we are including other library
files, add the following.

needs Events

n Step 3 – Constant Definitions: We need to add in some constant definitions that
correspond to the new resource id values defined above. If for some reason you used
different numbers as identifiers, it must be reflected here. The constant definitions for
the new resources are as follows.

1001 constant HelloForm
2001 constant AboutMenuItem
3000 constant AboutBox

n Step 4 – Handle New Events: Now our new code needs to check to see if the event
on stack from ekey is a menuEvent. If so, it should verify that it is actually the menu
entry we defined in our resources. If it is, it should put the “AboutBox” resource id on
the stack and invoke FrmAlert, which will pop up our alert box. The following word,
do-event handles this functionality.

: do-event (ekey --)
 menuEvent = if
 event >abs itemid
 AboutMenuItem = if
 AboutBox FrmAlert drop
 then
 then ;

n Step 5 – Update the Main Loop: Now we just need to update the code in go to deal
with the new menu event. In our original HelloWorld exercise, we used the following
line to keep the program running.

begin ekey drop again

 In this original loop, if an event (see Events in the Forth library files) occurred, ekey put
that event on the stack. Otherwise, ekey put nilEvent on the stack indicating that no
event had occurred. However, because our original application had nothing to do, the
eventType was just dropped, regardless of what it was. Now, instead of dropping the
event, we want to invoke the new do-event word. So, in our main loop, just change
drop to do-event.

22

The entire source listing is shown below. The changes from "hello-a" are shown in
bold.

\ hello-b 2/1/99 3:47 pm - SCD

needs ids
needs resources
needs Events

(ID) hiwb (ID) resc use-resources

1000 constant HelloForm
2001 constant AboutMenuItem
3000 constant AboutBox

: show-panel (--)
 HelloForm ShowForm ;

: do-event (ekey --)
 menuEvent = if
 event >abs itemid
 AboutMenuItem = if
 AboutBox FrmAlert drop
 then
 then ;

\ Main entry point:
: go show-panel
 begin ekey do-event again ;

23

Test – Exercise B

We are now ready to try out our new menu event. Enter Quartus Forth and type the
following:

include hello-b
go

If everything was done correctly, we should now be able to tap the MENU silk button and
see our menu. Alternatively, we could use the command-A keystroke to invoke our new
about box.

Create a Standalone Executable for HelloWorld - Exercise B

Now that everything tests out okay, we can generate a standalone executable that can be
launched outside of Quartus Forth from the application launcher. This section is only
applicable to registered users of Quartus Forth. The evaluation version does not generate
standalone applications.

The main command for creating a stand-alone executable is MakePRC. MakePRC reads
code from a specified execution token, and recursively extracts all required supporting
code into a new PRC with the name provided. In our example, the main word we use to
start our program, go, so we will use the execution token for go with MakePRC.

Remember: Each PRC that is released to the public must have a unique creator ID. See
the section, A Note About Creator IDs, above for more information.

Create the Make File

We will now create new memo file that will allow us to generate a standalone executable.

n Step 1 – Create a New Forth File: In order for us to make a standalone executable,
we need to create a new memo. Call it "make-hw".

\ make-hw 2/4/99 2:14 pm – SCD

n Step 2 - Include Necessary Files: This file should include "hello-b" because it
contains the main word go that we will be using with MakePRC. We also include "ids"

24

because we have to specify resource and creator IDs in this file. This is done with the
following Forth lines.

needs hello-b
needs ids

n Step 3 - Define Constants: If you will recall, our "hello-b" file contains some constant
definitions that correspond to certain resource IDs defined in the "hiwb" resource
database. However, we didn't define constants for all of these resources because it
wasn't necessary at the time. For the purposes of making a standalone executable,
we will need to specify resources that we did not use in "hello-b". So, for consistency,
we need to define a few more constants.

2000 constant MenuBar
3001 constant HelpString
1000 constant IconBitmap

n Step 4 - MakePRC: The next line in the file is the one that really does the work.

' go (id) Helo MakePRC Hello

I will go through each part of this line and attempt to explain what is happening here.

n ' go leaves xt (the execution token for the word "go") on the stack

n (id) Helo puts the creator ID that we want our standalone app to have on the
stack (see the note above concerning creator IDs)

n these two stack parameters are used by MakePRC to create an application
with the name, Hello

n Step 4 - Copy the Resources: The next several lines copy our resources from our
resource database into the target executable PRC file. This code must be done after
MakePRC.

HelloForm (id) tFRM copyrsrc
MenuBar (id) MBAR copyrsrc
AboutBox (id) Talt copyrsrc
HelpString (id) tSTR copyrsrc
IconBitmap (id) tAIB copyrsrc

25

Full Source Listing

The entire source listing for "make-hw" is listed below.

\ make-hw 2/4/99 2:14 pm - SCD

needs hello-b
needs ids

2000 constant MenuBar
3001 constant HelpString
1000 constant IconBitmap

' go (id) Helo MakePRC Hello

HelloForm (id) tFRM copyrsrc
MenuBar (id) MBAR copyrsrc
AboutBox (id) Talt copyrsrc
HelpString (id) tSTR copyrsrc
IconBitmap (id) tAIB copyrsrc

Create the Standalone Executable

Now that the make file is complete, executing the following steps should result in the
creation of a standalone PRC file.

n Step 1 – Enter Quartus Forth: Launch Quartus Forth from the application launcher.

n Step 2 – Include the Make File: Just enter the following line to include the make file.

include make-hw

 Quartus Forth should respond with a string of "… ..", followed by "ok". That's it. If you
return to your launcher, you should now see the Hello application.

Congratulations!

Congratulations on your first application developed completely on-board! The next time
you HotSync, this PRC file will be backed up to your backup directory. From there, it can
be distributed to others as desired. However, remember that this is just a sample
application because of the unofficial creator ID issue.

Now, let’s move on to something a bit more challenging.

26

A More Advanced Application

The next application we will develop will involve several more types of resources.
Furthermore, this application will contain more functionality, which will require more Forth
code. The focus of this section will be less on the resource creation, and more on the
Forth code required to generate the application.

This application is a simple tip calculator that we will call “QTip”, the "Q" paying tribute to
Quartus Forth. It will be developed over the course of several exercises. We will start with
a very basic tip calculator with a few fields and a “calculate” button.

Each exercise will extend the functionality of this tip calculator. Some goals for the final
application are:

n a basic tip calculator – calculate a specified percentage of the check total as tip,
and calculate the new total

n the ability to include tax in the original check total, or calculate it based on a
specified tax rate

n selectable service quality to determine tip percentage

n the ability to round, up or down, either the tip field or the total field

n a configurable preferences form that allows the user to specify the default modes
of operation of the QTip interface (i.e. rounding mode, default tip percentages,
default tax rate, etc.)

27

The final application should look something like the following.

To be continued…

This is where I am stopping for the first cut of this tutorial. I am well on my way to the first
cut of QTip. I will update this tutorial and release new versions as I complete each
exercise section.

Any constructive feedback on what I have done so far would be appreciated. I can be
reached at –

steven.donahue@arris-i.com

or

sdonahue@mindspring.com

